
django-authtools Documentation
Release 1.6.0

Fusionbox, Inc.

Jul 21, 2017

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Quick Setup . 3
1.3 But it’s supposed to be a custom User model! . 4

2 Admin 7

3 Forms 9

4 Views 11

5 Authentication Backends 15

6 Tutorials 17
6.1 How To Migrate to a Custom User Model . 17
6.2 How To Create Users Without Setting Their Password . 20

7 Talks 23
7.1 2013 August 27 - Boulder Django . 23

8 Contributing 25
8.1 Getting Started . 25
8.2 Running Tests . 25
8.3 Building Documentation . 26

9 CHANGES 27
9.1 1.6.0 (2017-06-14) . 27
9.2 1.5.0 (2016-03-26) . 27
9.3 1.4.0 (2015-11-02) . 27
9.4 1.3.0 (unreleased) . 28
9.5 1.2.0 (2015-04-02) . 28
9.6 1.1.0 (2015-02-24) . 28
9.7 1.0.0 (released August 16, 2014) . 28
9.8 0.2.2 (released July 21, 2014) . 28
9.9 0.2.1 . 29
9.10 0.2.0 . 29
9.11 0.1.2 (released July 01, 2013) . 29
9.12 0.1.1 (released May 30, 2013) . 29

i

9.13 0.1.0 (released May 28, 2013) . 29

10 Development 31

ii

django-authtools Documentation, Release 1.6.0

A custom user model app for Django 1.5+. It tries to stay true to the built-in User model for the most part. The main
differences between authtools and django.contrib.auth are a User model with email as username and classed-based
auth views.

It provides its own custom User model, views, urls, ModelAdmin, and Forms. The Admin classes, views, and forms,
however, are all User model agnostic, so they will work with any User model. django-authtools also provides base
classes that make creating your own custom User model easier.

Contents:

Contents 1

django-authtools Documentation, Release 1.6.0

2 Contents

CHAPTER 1

Introduction

Before you use this, you should probably read the documentation about custom User models.

Installation

1. Install the package:

$ pip install django-authtools

Or you can install it from source:

$ pip install -e git+http://github.com/fusionbox/django-authtools@master
→˓#egg=django-authtools-dev

2. Run the authtools migrations:

$ python manage.py migrate

Quick Setup

If you want to use the User model provided by authtools (a sensible choice), there are three short steps.

1. Add authtools to your INSTALLED_APPS.

2. Add the following to your settings.py:

AUTH_USER_MODEL = 'authtools.User'

3. Add authtools.urls to your URL patterns:

3

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#auth-custom-user

django-authtools Documentation, Release 1.6.0

urlpatterns = patterns('',
...
url(r'^accounts/', include('authtools.urls')),
...

)

This will set you up with a custom user that

• uses email as username

• has one name field instead of first_name, last_name (see Falsehoods Programmers Believe About
Names)

It also gives you a registered admin class that has a less intimidating ReadOnlyPasswordHashWidget and the
standard auth views (see Views).

But it’s supposed to be a custom User model!

Making a User model that only concerns itself with authentication and authorization just might be a good idea. I
recommend you read these:

• The User-Profile Pattern in Django

• Williams, Master of the “Come From”

Also, please read this quote from the Django documentation:

Warning: Think carefully before handling information not directly related to authentication in your custom User
Model.

It may be better to store app-specific user information in a model that has a relation with the User model. That
allows each app to specify its own user data requirements without risking conflicts with other apps. On the other
hand, queries to retrieve this related information will involve a database join, which may have an effect on perfor-
mance.

However, there are many valid reasons for wanting a User model that you can change things on. django-authtools
allows you to do that too. django-authtools provides a couple of abstract classes for subclassing.

class authtools.models.AbstractEmailUser
A no-frills email as username model that satisifes the User contract and the permissions API needed for the
Admin site.

class authtools.models.AbstractNamedUser
A subclass of AbstractEmailUser that adds a name field.

If want to make your custom User model, you can use one of these base classes.

Tip: If you are just adding some methods to the User model, but not changing the database fields, you should consider
using a proxy model.

If you wanted a User model that had full_name and preferred_name fields instead of just name, you could do
this:

4 Chapter 1. Introduction

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.fusionbox.com/blog/detail/the-user-profile-pattern-in-django/560/
https://github.com/raganwald/homoiconic/blob/master/2011/11/COMEFROM.md
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#specifying-a-custom-user-model

django-authtools Documentation, Release 1.6.0

from authtools.models import AbstractEmailUser

class User(AbstractEmailUser):
full_name = models.CharField('full name', max_length=255, blank=True)
preferred_name = models.CharField('preferred name',

max_length=255, blank=True)

def get_full_name(self):
return self.full_name

def get_short_name(self):
return self.preferred_name

1.3. But it’s supposed to be a custom User model! 5

django-authtools Documentation, Release 1.6.0

6 Chapter 1. Introduction

CHAPTER 2

Admin

django-authtools provides a couple of Admin classes. The default one is NamedUserAdmin, which provides
an admin similar to django.contrib.auth. If you are not using the AbstractNamedUser, you might want the
UserAdmin instead.

If you are using your own user model, authtools won’t register an Admin class to avoid problems. If you define
REQUIRED_FIELDS on your custom model, authtools will add those to the first fieldset.

class authtools.admin.NamedUserAdmin
This is the default Admin that is used if you use authtools.models.User as you AUTH_USER_MODEL.
Provides an admin for the default authtools.models.User model. It includes the default Permissions
and Important Date sections.

class authtools.admin.UserAdmin
Provides a generic admin class for any User model. It behaves as similarly to the built-in UserAdmin class as
possible.

class authtools.admin.StrippedUserAdmin
Provides a simpler view on the UserAdmin, it doesn’t include the Permission filters or the Important Dates
section.

class authtools.admin.StrippedNamedUserAdmin
Same as StrippedUserAdmin, but for a User model that has a name field.

7

django-authtools Documentation, Release 1.6.0

8 Chapter 2. Admin

CHAPTER 3

Forms

django-authtools provides several Form classes that mimic the forms in django.contrib.auth.forms, but work better
with USERNAME_FIELD and REQUIRED_FIELDS. These forms don’t require the authtools.models.User
class in order to work, they should work with any User model that follows the User class contract.

class authtools.forms.UserCreationForm
Basically the same as django.contrib.auth, but respects USERNAME_FIELD and User.REQUIRED_FIELDS.

class authtools.forms.CaseInsensitiveUsernameFieldCreationForm
This is the same form as UserCreationForm, but with an added method, clean_username which low-
ercases the username before saving. It is recommended that you use this form if you choose to use either the
CaseInsensitiveUsernameFieldModelBackend authentication backend class.

Note: This form is also available sa CaseInsensitiveEmailUserCreationForm for backwards compatibility.

class authtools.forms.UserChangeForm
A normal ModelForm that adds a ReadOnlyPasswordHashField with the
BetterReadOnlyPasswordHashWidget.

class authtools.forms.AdminUserChangeForm
Same as UserChangeForm, but adds a link to the admin change password form.

class authtools.forms.FriendlyPasswordResetForm
Basically the same as django.contrib.auth.forms.PasswordResetForm, but checks the email
address against the database and gives a friendly error message.

Warning: This form leaks user email addresses. Please refer to the view
friendly_password_reset().

It also provides a Widget class.

class authtools.forms.BetterReadOnlyPasswordHashWidget
This is basically the same as django’s ReadOnlyPasswordHashWidget, but it provides a less

9

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.PasswordResetForm

django-authtools Documentation, Release 1.6.0

intimidating user interface. Whereas django’s Widget displays the password hash with it’s salt,
BetterReadOnlyPasswordHashWidget simply presents a string of asterisks.

10 Chapter 3. Forms

CHAPTER 4

Views

django-authtools provides the following class-based views, intended to be mostly drop-in replacements for their built-
in counterparts.

In addition to the built-in views, there is a new PasswordResetConfirmAndLoginView that logs in the user
and redirects them after they reset their password.

Note: The view functions in Django were wrapped in decorators. The classed-based views provided by django-
authtools have the same decorators applied to their view functions. Any subclasses of these views will also have the
same decorators applied.

class authtools.views.LoginView
The view function authtools.views.login() replaces django.contrib.auth.views.
login().

disallow_authenticated
When True, authenticated users will be automatically redirected to the success_url when visiting
this view. Defaults to True.

class authtools.views.LogoutView
The view functions authtools.views.logout() and authtools.views.
logout_then_login() replace django.contrib.auth.views.logout() django.contrib.
auth.views.logout_then_login() respectively.

url
The URL to redirect to after logging in. This replaces the login_url parameter present in the built-in
function.

For the logout_then_login() this is default to LOGIN_REDIRECT_URL.

template_name
If url is None and there is no next parameter, LoginView will act like a TemplateView and display a
template.

11

https://docs.djangoproject.com/en/stable/topics/auth/default/#built-in-auth-views
https://docs.djangoproject.com/en/stable/topics/auth/default/#built-in-auth-views
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.login
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.login
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.logout
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.logout_then_login
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.logout_then_login
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGIN_REDIRECT_URL

django-authtools Documentation, Release 1.6.0

class authtools.views.PasswordChangeView
The view function authtools.views.password_change() replaces django.contrib.auth.
views.password_change().

success_url
This replaces the post_change_redirect parameter present in the built-in function. Uses the next
URL parameter or defaults to the ‘password_change_done’ view.

class authtools.views.PasswordChangeDoneView
The view function authtools.views.password_change_done() replaces django.contrib.
auth.views.password_change_done().

class authtools.views.PasswordResetView
The view function authtools.views.password_reset() replaces django.contrib.auth.
views.password_reset().

success_url
The pages which the user should be redirected to after requesting a password reset. This replaces the
next_page parameter present in the built-in function. Defaults to the ‘password_reset_done’ view.

form_class
The form class to present the user. This replaces the password_reset_form parameter present in the
built-in function.

Django 1.6 removed the email check from this view in order to avoid leaking user email addresses.

In some cases, this can worsen user experience without providing any extra security. For example, if email
addresses are unique, then the registration form will be leaking email addresses.

If you’re in this case, and you wish to improve usability of this view informing the user if they did any typo, you
can do:

yourproject/urls.py
urlpatterns += patterns(# ...

...
url('^auth/password_reset/$',

PasswordResetView.as_view(FriendlyPasswordResetForm),
name='password_reset'),

url('^auth/', include('authtools.urls'),
...

)

class authtools.views.PasswordResetDoneView
The view function authtools.views.password_reset_done() replaces django.contrib.
auth.views.password_reset_done().

class authtools.views.PasswordResetConfirmView
The view function authtools.views.password_reset_confirm() replaces django.contrib.
auth.views.password_reset_confirm().

success_url
Where to redirect the user after resetting their password. This replaces the post_reset_redirect
parameter present in the built-in function.

form_class
The form class to present the user when resetting their password. The form class must provide a
save method like in the django.contrib.auth.forms.SetPasswordForm This replaces the
set_password_form parameter present in the built-in function. Default is django.contrib.
auth.forms.SetPasswordForm.

12 Chapter 4. Views

https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_change
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_change
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_change_done
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_change_done
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset
https://code.djangoproject.com/ticket/19758
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_done
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_done
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_confirm
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_confirm
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.SetPasswordForm
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.SetPasswordForm
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.SetPasswordForm

django-authtools Documentation, Release 1.6.0

Note: Django 1.6 changed this view to support base-64 encoding the user’s pk. Django provides a different
view for each type of encoding, but our view works with both, so we only have a single view.

This was a backwards-incompatible change in Django, so be sure to update your urlpatterns and anywhere you
reverse the password_reset_confirm URL (like the password reset email template, registration/
password_reset_email.html).

class authtools.views.PasswordResetConfirmAndLoginView
Available as the view function authtools.views.password_reset_confirm_and_login().

This is like PasswordResetConfirmView , but also logs the user in after resetting their password. By
default, it will redirect the user to the LOGIN_REDIRECT_URL.

If you wanted to use this view, you could have a url config that looks like:

urlpatterns = patterns('',
url('^reset/(?P<uidb36>[0-9A-Za-z]{1,13})-(?P<token>[0-9A-Za-z]{1,13}-[0-9A-

→˓Za-z]{1,20})/$',
'authtools.views.password_reset_confirm_and_login', name='password_reset_

→˓confirm'),
url('^', include('authtools.urls')),

)

Note: In Django 1.6, the uidb36 kwarg was changed to uidb64, so your url will look like:

url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]
→˓{1,20})/$',

'authtools.views.password_reset_confirm_and_login',
name='password_reset_confirm'),

Like PasswordResetConfirmView , this view supports both uid36 and uidb64.

class authtools.views.PasswordResetCompleteView
The view function authtools.views.password_reset_complete() replaces django.
contrib.auth.views.password_reset_complete().

13

https://docs.djangoproject.com/en/dev/releases/1.6/#django-contrib-auth-password-reset-uses-base-64-encoding-of-user-pk
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGIN_REDIRECT_URL
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_complete
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.password_reset_complete

django-authtools Documentation, Release 1.6.0

14 Chapter 4. Views

CHAPTER 5

Authentication Backends

django-authtools provides two authentication backend classes. These backends offer more customization for authenti-
cation.

class authtools.backends.CaseInsensitiveUsernameFieldModelBackend
Enables case-insensitive logins for the User model. It works by simply lowercasing usernames before trying to
authenticate.

There is also a CaseInsensitiveUsernameFieldBackendMixin if you need more flexibility.

To use this backend class, add it to your settings:

settings.py
AUTHENTICATION_BACKENDS = [

'authtools.backends.CaseInsensitiveUsernameFieldModelBackend',
]

Warning: Use of this mixin assumes that all usernames are stored in their lowercase form, and that there is
no way to have usernames differing only in case. If usernames can differ in case, this authentication backend
mixin could cause errors in user authentication. It is advised that you use this mixin in conjuction with the
CaseInsensitiveUsernameFieldCreationForm form.

class authtools.backends.CaseInsensitiveUsernameFieldBackendMixin
Mixin enabling case-insensitive logins.

15

django-authtools Documentation, Release 1.6.0

16 Chapter 5. Authentication Backends

CHAPTER 6

Tutorials

Here is a list of tutorials for dealing with custom User models.

How To Migrate to a Custom User Model

If you are using the built-in Django User model and you want to switch to an authtools-based User model, there are
certain steps you have to take in order to keep all of your data. These are steps that have worked for me in the past,
maybe they will help to inform your journey.

This tutorial assumes that you are using South for migrations. If you aren’t you probably should be using it. Unless of
course, it’s the future and the schema-alteration of Django has been completed and merged.

It also assumes that you already have users in your database and that you need to preserve that data. If you don’t
already have users in your database, you switch easily already.

This tutorial shows the easy way to migrate custom Users, keeping the same database table. If you want to move to
your own database table, there is an excellent answer on StackOverflow.

Step 1: Backup your database

There are several commands for doing this depending on your RDBMS (pg_dump, mysqldump, cp). If you don’t
want to worry about those, you could also look for a solution like django-backupdb. You do not want to start this
process without having a backup of your database.

Steps 2 and 3 are actually completely safe. They don’t actually affect the database. What they do accomplish is moving
the authoritative source of control over the User model class from django to your code.

Step 2: Make a new app

This is the app where your custom User model will live. I usually call this app accounts.

17

https://github.com/andrewgodwin/django/tree/schema-alteration
http://stackoverflow.com/questions/14904046/migrating-existing-auth-user-data-to-new-django-1-5-custom-user-model
https://github.com/fusionbox/django-backupdb

django-authtools Documentation, Release 1.6.0

$ python manage.py startapp accounts

In your new app, edit the models file and add the following:

from django.db import models
from django.contrib.auth.models import AbstractUser

class User(AbstractUser):
class Meta:

db_table = 'auth_user'

This will put the User model in the same database table as the old one. This is not ideal, but it is the easiest way to do
this migration.

Add your accounts app to INSTALLED_APPS.

Set the AUTH_USER_MODEL setting to point to your new User model.

AUTH_USER_MODEL = 'accounts.User'

Step 3: Seize control

Generate an initial migration for the accounts app.

$ python manage.py schemamigration --initial accounts

If you are working on a new database and are running the migrations from scratch, you can run that migration normally.
However, if you are working on an existing database, this migration will fail because the tables it attempts to create
already exist. You will have to fake run this migration.

$ python manage.py migrate --fake accounts 0001

Note: If you are very certain that these migrations will never be run on an empty database, you can replace the bodies
forwards and backwards migrations with pass. This is not a good idea though.

Step 4: Conquer

Your accounts app is now the authoritative source for the User model. You are in charge now.

Go build stuff.

Optional Step 5: Customize

Warning: There is a potential unique constraint failure here. If you don’t have emails for all of your users, you
won’t be able to migrate. If you don’t have emails for all of your users, they won’t be able to log in either, so you
should make sure that you have all of those email addresses first.

Now that you have control of the User model, there are tons of customizations that you can do. One thing that I like to
do is treat email as the username and get rid of first_name/last_name in favor of a single name field. Here’s
how I’ve done it in the past.

18 Chapter 6. Tutorials

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_USER_MODEL

django-authtools Documentation, Release 1.6.0

1. Install django-authtools.

$ pip install django-authtools

2. Add the fields that I want to User. In this case, all I want to add is name. email already exists on User, but I
do need to make it unique if I’m going to treat it as a username.

Here is an implementation of the User model using authtools.models.AbstractNamedUser as a
base. It preserves all of the fields that are on the built-in User model, but adds name and treats email as the
username.

from django.db import models
from django.utils.translation import ugettext_lazy as _

from authtools.models import AbstractNamedUser

class User(AbstractNamedUser):
username = models.CharField(_('username'), max_length=30, unique=True)
first_name = models.CharField(_('first name'), max_length=30, blank=True)
last_name = models.CharField(_('last name'), max_length=30, blank=True)

class Meta:
db_table = 'auth_user'

I still have first_name and last_name because I have to preserve that data, I will get rid of those fields in
step 5. When you are altering the schema and migrating data, the South tutorial on data migrations recommends
that you split it up into 3 steps.

3. Make a schema migration to add those fields.

$ python manage.py schemamigration --auto accounts

4. Make a data migration to copy first_name/last_name into name.

$ python manage.py datamigration accounts consolidate_name_field

Here is an example of a migration that does this:

class Migration(DataMigration):
def forwards(self, orm):

for user in orm['accounts.User'].objects.all():
user.name = user.first_name + ' ' + user.last_name
user.save()

def backwards(self, orm):
for user in orm['accounts.User'].objects.all():

If there are more than two names, assume that the rest
are their last names.
user.first_name, _, user.last_name = user.name.partition(' ')
user.save()

The backwards migration does make some assumptions about how names work, but those are the assumptions
you are forced to make when using a system that assumes people have two names.

5. Delete the columns you don’t want on your User model. For me, that’s username, first_name, and
last_name. My User model now looks like this:

6.1. How To Migrate to a Custom User Model 19

http://south.aeracode.org/wiki/Tutorial3

django-authtools Documentation, Release 1.6.0

class User(AbstractNamedUser):
class Meta:

db_table = 'auth_user'

6. Generate a migration that deletes those extra fields.

$ python manage.py schemamigration --auto accounts

You will be presented with a question about what to do in the backwards migration. The username field was
non-nullable, which means it’s impossible to go back. I would select to disable backwards migrations.

7. Run the migrations.

$ python manage.py migrate accounts

8. Watch YouTube. You are done.

How To Create Users Without Setting Their Password

When creating a new user through Django’s admin interface, you are asked to enter the new user’s password. This
is less than ideal, because it requires the admin to think of a password for someone else, communicate it to them
somehow, and then the user must remember to change it. A better way would be to send a password-reset email to the
new user, allowing them to enter their own password.

To implement this, we need to provide a user-creation form that has an optional (instead of required, like the built-in
form) password field and a User admin that uses the form and sends the password-reset email when creating a new
user.

We’ll subclass UserCreationForm to create a form with optional password fields:

from django import forms
from authtools.forms import UserCreationForm

class UserCreationForm(UserCreationForm):
"""
A UserCreationForm with optional password inputs.
"""

def __init__(self, *args, **kwargs):
super(UserCreationForm, self).__init__(*args, **kwargs)
self.fields['password1'].required = False
self.fields['password2'].required = False
If one field gets autocompleted but not the other, our 'neither
password or both password' validation will be triggered.
self.fields['password1'].widget.attrs['autocomplete'] = 'off'
self.fields['password2'].widget.attrs['autocomplete'] = 'off'

def clean_password2(self):
password1 = self.cleaned_data.get("password1")
password2 = super(UserCreationForm, self).clean_password2()
if bool(password1) ^ bool(password2):

raise forms.ValidationError("Fill out both fields")
return password2

Then an admin class that uses our form and sends the email:

20 Chapter 6. Tutorials

http://www.youtube.com/watch?v=9bZkp7q19f0

django-authtools Documentation, Release 1.6.0

from django.contrib.auth import get_user_model
from django.contrib.auth.forms import PasswordResetForm
from django.utils.crypto import get_random_string
from authtools.admin import NamedUserAdmin

User = get_user_model()

class UserAdmin(NamedUserAdmin):
"""
A UserAdmin that sends a password-reset email when creating a new user,
unless a password was entered.
"""
add_form = UserCreationForm
add_fieldsets = (

(None, {
'description': (

"Enter the new user's name and email address and click save."
" The user will be emailed a link allowing them to login to"
" the site and set their password."

),
'fields': ('email', 'name',),

}),
('Password', {

'description': "Optionally, you may set the user's password here.",
'fields': ('password1', 'password2'),
'classes': ('collapse', 'collapse-closed'),

}),
)

def save_model(self, request, obj, form, change):
if not change and (not form.cleaned_data['password1'] or not obj.has_usable_

→˓password()):
Django's PasswordResetForm won't let us reset an unusable
password. We set it above super() so we don't have to save twice.
obj.set_password(get_random_string())
reset_password = True

else:
reset_password = False

super(UserAdmin, self).save_model(request, obj, form, change)

if reset_password:
reset_form = PasswordResetForm({'email': obj.email})
assert reset_form.is_valid()
reset_form.save(

request=request,
use_https=request.is_secure(),
subject_template_name='registration/account_creation_subject.txt',
email_template_name='registration/account_creation_email.html',

)

Using django.contrib.auth.forms.PasswordResetForm allows us to share the email-sending code with
Django. If you wanted to change the template the email uses, email_template_name would be the place to do it.

Now we can replace the installed UserAdmin with our own.

from django.contrib import admin
admin.site.unregister(User)

6.2. How To Create Users Without Setting Their Password 21

https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.PasswordResetForm

django-authtools Documentation, Release 1.6.0

admin.site.register(User, UserAdmin)

You can view the complete admin.py file here.

22 Chapter 6. Tutorials

CHAPTER 7

Talks

2013 August 27 - Boulder Django

You can see the slides for “django-authtools, Custom User Model for Everyone!” given at Boulder Django on Speaker
Deck.

23

http://www.meetup.com/boulder-django/
https://speakerdeck.com/aaronmerriam/django-authtools-a-custom-user-model-for-everyone
https://speakerdeck.com/aaronmerriam/django-authtools-a-custom-user-model-for-everyone

django-authtools Documentation, Release 1.6.0

24 Chapter 7. Talks

CHAPTER 8

Contributing

We welcome contributions of all sizes, whether it be a small text change or a large new feature. Here are are some
steps for getting started contributing.

Getting Started

1. Install the development requirements:

$ pip install -r requirements-dev.txt

Running Tests

The best way to run the tests is using tox. You can run the tests on all of our supported Python and Django versions
by running:

$ tox

You can also run specific targets using the -e flag.

$ tox -e py33-dj18

A full list of available tox environments is in the tox.ini configuration file.

django-authtools comes with a test suite that inherits from the built-in Django auth test suite. This helps us ensure
compatibility with Django and that we can get a little bit of code reuse. The tests are run three times against three
different User models.

You can get a test coverage report by running make coverage. We do not strive for 100% coverage on django-
authtools, but it is still a useful metric.

25

http://tox.readthedocs.org/en/latest/

django-authtools Documentation, Release 1.6.0

Building Documentation

You can build the documentation by running

$ make docs

If you are editing the README.rst file, please make sure that it compiles correctly using the longtest command
that is provided by zest.releaser.

$ longtest

26 Chapter 8. Contributing

CHAPTER 9

CHANGES

1.6.0 (2017-06-14)

• Add support for Django 1.9, 1.10, 1.11 (Jared Proffitt #82)

• Remove old conditional imports dating as far back as Django 1.5

• Update readme

1.5.0 (2016-03-26)

• Update various help_text fields to match Django 1.9 (Wenze van Klink #51, Gavin Wahl #64, Jared Proffitt #67,
Ivan VenOsdel #69)

• Documentation fixes (Yuki Izumi #52, Piët Delport #60, Germán Larraín #65)

• Made case-insensitive tooling work with more than just USERNAME_FIELD=’username’ (Jared Proffitt,
Rocky Meza #72, #73)

1.4.0 (2015-11-02)

• Dropped Django 1.7 compatibility (Antoine Catton)

• Add Django 1.8 compatibility (Antoine Catton, Gavin Wahl, #56)

• Backwards Incompatible: Remove 1.6 URLs (Antoine Catton)

• Backwards Incompatible: Remove view functions

27

django-authtools Documentation, Release 1.6.0

1.3.0 (unreleased)

• Added Django 1.7 compatibility (Antoine Catton, Rocky Meza, #35)

• LoginView.disallow_authenticated was changed to LoginView.allow_authenticated

• LoginView.disallow_authenticated was deprecated.

• Backwards Incompatible: LoginView.allow_authenticated is now True by default (which is the
default behavior in Django)

• Create migrations for authtools.

If updating from an older authtools, these migrations must be run on your apps:

$ python manage.py migrate --fake authtools 0001_initial

$ python manage.py migrate

1.2.0 (2015-04-02)

• Add CaseInsensitiveEmailUserCreationForm for creating users with lowercased email address usernames
(Bradley Gordon, #31, #11)

• Add CaseInsensitiveEmailBackendMixin, CaseInsensitiveEmailModelBackend for authenticating case-
insensitive email address usernames (Bradley Gordon, #31, #11)

• Add tox support for test running (Piper Merriam, #25)

1.1.0 (2015-02-24)

• PasswordChangeView now handles a next URL parameter (#24)

1.0.0 (released August 16, 2014)

• Add friendly_password_reset view and FriendlyPasswordResetForm (Antoine Catton, #18)

• Bugfix Allow LOGIN_REDIRECT_URL to be unicode (Alan Johnson, Gavin Wahl, Rocky Meza, #13)

• Backwards Incompatible Dropped support for Python 3.2

0.2.2 (released July 21, 2014)

• Update safe urls in tests

• Give the ability to restrain which users can reset their password

• Add send_mail to AbstractEmailUser. (Jorge C. Leitão)

28 Chapter 9. CHANGES

django-authtools Documentation, Release 1.6.0

0.2.1

• Bugfix: UserAdmin was expecting a User with a name field.

0.2.0

• Django 1.6 support.

Django 1.6 broke backwards compatibility of the password_reset_confirm view. Be sure to update any
references to this URL. Rather than using a separate view for each encoding, authtools uses a single view that
works with both.

• Bugfix: if LOGIN_URL was a URL name, it wasn’t being reversed in the PasswordResetConfirmView.

0.1.2 (released July 01, 2013)

• Use prefetch_related in the UserChangeForm to avoid doing hundreds of ContentType queries. The
form from Django has the same feature, it wasn’t copied over correctly in our original form.

0.1.1 (released May 30, 2013)

• some bugfixes:

• Call UserManager.normalize_email on an instance, not a class.

• authtools.models.User should inherit its parent’s Meta.

0.1.0 (released May 28, 2013)

• django-authtools

9.9. 0.2.1 29

https://docs.djangoproject.com/en/dev/releases/1.6/#django-contrib-auth-password-reset-uses-base-64-encoding-of-user-pk
https://django-authtools.readthedocs.org/en/latest/views.html#authtools.views.PasswordResetConfirmView
https://django-authtools.readthedocs.org/en/latest/forms.html#authtools.forms.UserChangeForm

django-authtools Documentation, Release 1.6.0

30 Chapter 9. CHANGES

CHAPTER 10

Development

Development for django-authtools happens on GitHub. Pull requests are welcome. Continuous integration is hosted
on Travis CI.

31

https://github.com/fusionbox/django-authtools
https://travis-ci.org/fusionbox/django-authtools

django-authtools Documentation, Release 1.6.0

32 Chapter 10. Development

Index

A
AdminUserChangeForm (class in authtools.forms), 9
authtools.models.AbstractEmailUser (built-in class), 4
authtools.models.AbstractNamedUser (built-in class), 4

B
BetterReadOnlyPasswordHashWidget (class in auth-

tools.forms), 9

C
CaseInsensitiveUsernameFieldBackendMixin (class in

authtools.backends), 15
CaseInsensitiveUsernameFieldCreationForm (class in au-

thtools.forms), 9
CaseInsensitiveUsernameFieldModelBackend (class in

authtools.backends), 15

D
disallow_authenticated (authtools.views.LoginView at-

tribute), 11

F
form_class (authtools.views.PasswordResetConfirmView

attribute), 12
form_class (authtools.views.PasswordResetView at-

tribute), 12
FriendlyPasswordResetForm (class in authtools.forms), 9

L
LoginView (class in authtools.views), 11
LogoutView (class in authtools.views), 11

N
NamedUserAdmin (class in authtools.admin), 7

P
PasswordChangeDoneView (class in authtools.views), 12
PasswordChangeView (class in authtools.views), 11

PasswordResetCompleteView (class in authtools.views),
13

PasswordResetConfirmAndLoginView (class in auth-
tools.views), 13

PasswordResetConfirmView (class in authtools.views),
12

PasswordResetDoneView (class in authtools.views), 12
PasswordResetView (class in authtools.views), 12

S
StrippedNamedUserAdmin (class in authtools.admin), 7
StrippedUserAdmin (class in authtools.admin), 7
success_url (authtools.views.PasswordChangeView at-

tribute), 12
success_url (authtools.views.PasswordResetConfirmView

attribute), 12
success_url (authtools.views.PasswordResetView at-

tribute), 12

T
template_name (authtools.views.LogoutView attribute),

11

U
url (authtools.views.LogoutView attribute), 11
UserAdmin (class in authtools.admin), 7
UserChangeForm (class in authtools.forms), 9
UserCreationForm (class in authtools.forms), 9

33

	Introduction
	Installation
	Quick Setup
	But it's supposed to be a custom User model!

	Admin
	Forms
	Views
	Authentication Backends
	Tutorials
	How To Migrate to a Custom User Model
	How To Create Users Without Setting Their Password

	Talks
	2013 August 27 - Boulder Django

	Contributing
	Getting Started
	Running Tests
	Building Documentation

	CHANGES
	1.6.0 (2017-06-14)
	1.5.0 (2016-03-26)
	1.4.0 (2015-11-02)
	1.3.0 (unreleased)
	1.2.0 (2015-04-02)
	1.1.0 (2015-02-24)
	1.0.0 (released August 16, 2014)
	0.2.2 (released July 21, 2014)
	0.2.1
	0.2.0
	0.1.2 (released July 01, 2013)
	0.1.1 (released May 30, 2013)
	0.1.0 (released May 28, 2013)

	Development

